

Roy F Weston, Inc. Suite 5700 700 5th Avenue Seattle, Washington 98104-5057 206-521-7600 • Fax 206-521-7601

MEMORANDUM

DATE: 17 November 1998

TO David Bennett, WAM, U.S. EPA, Region X

FROM: Michelle Turner, Chemist, WESTON, Seattle

Roger McGinnis, Senior Environmental Chemist, WESTON, Seattle

SUBJECT: Validation of Organotin Data

Laboratory Batch: K9805449

Site: Duwamish River

WORK ASSIGNMENT NO: 46-35-0JZZ

WORK ORDER NO: 4000-019-038-5200-00

DOC. CONTROL NO.: 4000-019-038-AAAK

cc: Bruce Woods, RAP-WAM, U.S. EPA, Region X

Dena Hughes, Site Manager, WESTON, Seattle

Kevin Mundell-Jackson, Database Management, WESTON

The quality assurance review of seven sediment samples, laboratory batch K9805449, collected from the Duwamish River has been completed. The sediment samples were analyzed for organotins by Columbia Analytical Services of Kelso, Washington. Samples were analyzed by gas chromatography with an FPD detector. The samples were numbered:

98334012 98334017 98334019 98334020

98334022 98334023 98334024

Data Qualifications

The following comments refer to the laboratory performance in meeting the quality control criteria described in the technical specifications of the laboratory subcontract. The review follows the format described in the *National Functional Guidelines for Organic Data Review* (EPA OSWER Directive 9240 1, February 1994), modified to include specific requirements of analytical methods.

This document was prepared by Roy F Weston, Inc expressly for the EPA It shall not be disclosed in whole or in part without the express, written permission of the EPA

98-0627I 002 DCN 4000-019-038-AAAK 17 November 1998 Region X

QA Review Batch K9805449 (Organotin) Site. Duwamish River

Page 2

1. Timeliness

Holding time limits of 7 days for sample extraction and additional 7 days for analysis were established in the project Sampling and Analysis plan. All samples met holding time criteria.

2. Detection Limits—Acceptable

Instrument detection limits met project required quantitation limits.

3 Initial Calibration

A six-point initial calibration was performed prior to each analytical batch. The percent relative standard deviation for the initial calibration was within limits of less than 25 percent RSD.

4 Continuing Calibrations

Continuing calibration check was performed after every 10 samples. All target analytes were within required limits for the continuing calibrations with the percent difference for a mid-range standard less than 25 percent.

Blanks

a) Laboratory Method Blanks

Laboratory method blank frequency criteria were met. No target analytes were reported in laboratory method blanks.

b) Field Blanks

No field blanks were associated with this SDG

6. Surrogate Compound Recovery

Surrogate recovery goals for tri-n-propyltin were established in the project Sampling and Analysis Plan at 60 to 120 percent for both sediment and porewater. Based on conversations with the laboratory an additional surrogate, tripentyltin was added and

This document was prepared by Roy F Weston, Inc expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the EPA

QA Review Batch K9805449 (Organotin)

Site. Duwamish River

Page 3

historical laboratory control chart limits were also used for data qualification. Laboratory limits are presented below:

Surrogate Compound	Sediment Limits	Porewater Limits
Tripropyltin	20 - 195%	20 -113%
Tripentyltin	20 - 175%	20 - 133%

Surrogate compound percent recovery met quality control criteria for all samples, with the exception of the following:

Sample	Surrogate	Percent Recovery
98334023	Tripentyltin	123%

Sample results are qualified as estimated (J) when both surrogate recoveries are outside project limits. No qualifiers were assigned as only one surrogate in sample 98334023 was outside the project limits.

7. Laboratory Control Sample (LCS)

LCS recovery goals for tributyltin were established in the project Sampling and Analysis Plan at 60 to 130% for both sediment and porewater. Based on conversations with the laboratory, historical control chart limits of 20 to 138 percent for water and 20 to 164 percent for sediment were also used for data qualification.

All laboratory control sample percent recoveries met QC guidelines (P-project, L-laboratory), with the exception of the following:

LCS	Analyte	Percent Recovery	QC Limit	Associated Samples
K980814-LCS	ก-Butyltın	20	60-130 (P) 20-164 (L)	98334012 98334017 98334019 98334020 98334022 98334023 98334024

This document was prepared by Roy F Weston, Inc expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the EPA.

QA Review Batch K9805449 (Organotin) Site Duwamish River Page 4

Sample results for n-Butyltin were qualified as estimated (J) when LCS recoveries were outside project limits Undetected results for n-Butyltin were qualified as estimated (UI) when LCS recoveries were outside project limits.

8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

The following matrix spike recovery goals were established in the project Sampling and Analysis Plan at for both sediment and porewater.

Analyte	% Recovery	_
Tributyltin	40 - 120%	
Dibutyltin	30 - 120%	_
Monbutyltin	10 - 120%	

MS/MSD sample percent recoveries and relative percent differences (RPDs) for Tri-n-Butyltin, Di-n-Butyltin and n-Butyltin were not calculated due to high analyte concentrations in the sample. As LCS results were acceptable for Tri-n-butyltin and Di-n-butyltin, samples were not qualified based on matrix spike/matrix spike duplicate results.

9. Field Duplicate Analysis

No field duplicates were associated with this SDG.

10. Sample Analysis

A cursory review of raw data was performed. All results were verified on a second, dissimilar, confirmation GC column. No unusual problems were noted. A duplicate analysis was also performed, RPD results between replicates were less than 35 percent for all analytes.

The case narrative indicated that matrix spike/matrix spike duplicate recoveries for Tri-n-butyltin and Di-n-butyltin for the batch QC sample was not calculated due to high analyte concentrations in the sample These high analyte levels prevented accurate evaluation of the spike recovery. No other problems were noted.

This document was prepared by Roy F Weston, Inc expressly for the EPA. It shall not be disclosed in whole or in part without the express, written permission of the EPA

QA Review Batch K9805449 (Organotin) Site Duwamish River Page 5

11. Laboratory Contact

No laboratory contact was required

Data Assessment

Upon consideration of the data qualifications noted above, the data are ACCEPTABLE for use except where flagged with data qualifiers that modify the usefulness of the individual values

Data Qualifiers

- U The compound was analyzed for, but was not detected.
- UJ The compound was analyzed for, but was not detected. The associated quantitation limit is an estimate because quality control criteria were not met.
- The analyte was positively identified, but the associated numerical value is an
 estimated quantity because quality control criteria were not met or because
 concentrations reported are less than the quantitation limit or lowest calibration
 standard.
- R Quality control indicates that data are unusable (compound may or may not be present). Resampling and reanalysis are necessary for verification
- N Presumptive evidence of presence of material (tentative identification).

This document was prepared by Roy F Weston, Inc expressly for the EPA It shall not be disclosed in whole or in part without the express, written permission of the EPA

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwamish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Received: 8/13/98

Date Collected: 8/12/98

Butyltins

Sample Name

Lab Code

98334012

K9805449-005

Test Notes

D

Units ug/Kg (ppb)

Basis Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltın	Method	Butyltins-GC	10	10	8/14/98	8/19/98	ND	
Tri-n-butyiltin	Method	Butyltins-GC	10	10	8/14/98	8/19/98	99	
Dı-n-butyltın	Method	Butyltans-GC	10	10	8/14/98	8/19/98	57	
n-Butyltin	Method	Butyltins-GC	10	10	8/14/98	8/19/98	17	J

The MRL is elevated because of matrix interferences and because the sample required diluting

Approved By

Date 8-31-98

1822/020597p

D

05449SVG JGI 18/26/98

Page No

7.97 Hzakis

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwanush River/4000-027-001-2019-38

Service Request: K9805449 Date Collected: 8/12/98

Sample Matrix:

Sediment

Date Received: 8/13/98

Butyltins

Sample Name

98334017

Units ug/Kg (ppb)

Lab Code

K9805449-010

Basis Dry

Test Notes

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltın	Method	Butyltms-GC	10	10	8/14/98	8/19/98	ND	
Tri-n-butylltin	Method	Butyltms-GC	10	10	8/14/98	8/19/98	200	
Dı-n-butyltın	Method	Butyltms-GC	10	10	8/14/98	8/19/98	48	
n-Butyltin	Method	Butyltans-GC	10	10	8/14/98	8/19/98	44	J

D

The MRL is elevated because of matrix interferences and because the sample required diluting

MGT 10/24/18

Approved By

1S22/020597p

Date 8-31- 18

05449SVG JG1 - 2 8/26/98

Page No

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwarnish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Collected: 8/12/98

Date Received: 8/13/98

Butyltins

Sample Name

98334019

Lab Code

K9805449-012

Test Notes

D

Units ug/Kg (ppb)

Basis Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltın	Method	Butyltıns-GC	10	10	8/14/98	8/19/98	ND	
Trı-n-butylltın	Method	Butyltıns-GC	10	10	8/14/98	8/19/98	110	
Dı-n-butyltın	Method	Butyltıns-GC	10	10	8/14/98	8/19/98	34	
n-Butyltın	Method	Butyltıns-GC	10	10	8/14/98	8/19/98	11 ブ	

D

The MRL is elevated because of matrix interferences and because the sample required diluting

MUGT 10/24/12

Approved By

1S22/020597p

Date _ &- 31- 98

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwamish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Collected: 8/12/98

Date Received: 8/13/98

Butyltins

Sample Name

98334020

Lab Code

K9805449-013

Test Notes

D

Units ug/Kg (ppb)

Basis Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltin	Method	Butyltins-GC	10	10	8/14/98	8/19/98	ND	
Trı-n-butylltın	Method	Butyltins-GC	10	10	8/14/98	8/19/98	250	
Dı-n-butyltın	Method	Butyltins-GC	10	10	8/14/98	8/19/98	45	
n-Butyltın	Method	Butyltins-GC	10	10	8/14/98	8/19/98	37	J

D

The MRL is elevated because of matrix interferences and because the sample required diluting

- MCTT .0/24/58

Approved By

1822/020597p

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwamish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Collected: 8/12/98

Date Received: 8/13/98

Butyltıns

Sample Name

98334022

Lab Code

K9805449-015

Test Notes

D

Units ug/Kg (ppb)

Basis Dry

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltın	Method	Butyltıns-GC	5	5	8/14/98	8/19/98	ND	
Trı-n-butylltın	Method	Butyltıns-GC	5	5	8/14/98	8/19/98	170	
Dı-n-butyltın	Method	Butyltins-GC	5	5	8/14/98	8/19/98	36	
n-Butyltin	Method	Butyltıns-GC	5	5	8/14/98	8/19/98	41	J

D

The MRL is elevated because of matrix interferences and because the sample required diluting

MGT 10/20/98

Approved By

1822/020597p

Cars .

05449SVG JG1 - 5 8/26/98

Page No

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwamish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Collected: 8/12/98

Date Received: 8/13/98

Butyltins

Sample Name

98334023

Units ug/Kg (ppb)

Lab Code

K9805449-016

Basis Dry

Test Notes

D

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltin	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	ND	
Trı-n-butylitın	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	180	
Dı-n-butyltın	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	55	
n-Butyltin	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	MD 10	WJ

D

The MRL is elevated because of matrix interferences and because the sample required diluting

MY 17/24/98

Approved By

1822/020597p

Date 8-31-98

Analytical Report

Client:

Roy F Weston, Inc

Project:

Duwamish River/4000-027-001-2019-38

Sample Matrix:

Sediment

Service Request: K9805449

Date Collected: 8/12/98

Date Received: 8/13/98

Butyltins

Sample Name

98334024

Units ug/Kg (ppb)

Lab Code

K9805449-017

Basis Dry

Test Notes

 \mathbf{p}

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Tetra-n-butyltın	Method	Butyltins-GC	10	10	8/14/98	8/20/98	ND	
Trı-n-butylltın	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	160	
Di-n-butyltin	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	49	
n-Butyltin	Method	Butyltıns-GC	10	10	8/14/98	8/20/98	26 J	

D

The MRL is elevated because of matrix interferences and because the sample required diluting

11/24/98

Approved By

1S22/020597p

_Date _ 8.31.98